Dynamic Aggregation to Support Pattern Discovery: A Case Study with Web Logs
Title | Dynamic Aggregation to Support Pattern Discovery: A Case Study with Web Logs |
Publication Type | Book Chapters |
Year of Publication | 2001 |
Authors | Tang L, Shneiderman B |
Editor | Jantke K, Shinohara A |
Book Title | Discovery ScienceDiscovery Science |
Series Title | Lecture Notes in Computer Science |
Volume | 2226 |
Pagination | 464 - 469 |
Publisher | Springer Berlin / Heidelberg |
ISBN Number | 978-3-540-42956-2 |
Abstract | Rapid growth of digital data collections is overwhelming the capabilities of humans to comprehend them without aid. The extraction of useful data from large raw data sets is something that humans do poorly. Aggregation is a technique that extracts important aspect from groups of data thus reducing the amount that the user has to deal with at one time, thereby enabling them to discover patterns, outliers, gaps, and clusters. Previous mechanisms for interactive exploration with aggregated data were either too complex to use or too limited in scope. This paper proposes a new technique for dynamic aggregation that can combine with dynamic queries to support most of the tasks involved in data manipulation. |
URL | http://dx.doi.org/10.1007/3-540-45650-3_42 |